Interval Estimation of Value-at-Risk Based on GARCH Models with Heavy Tailed Innovations
نویسندگان
چکیده
ARCH and GARCH models are widely used to model financial market volatilities in risk management applications. Considering a GARCH model with heavy-tailed innovations, we characterize the limiting distribution of an estimator of the conditional Value-at-Risk (VaR), which corresponds to the extremal quantile of the conditional distribution of the GARCH process. We propose two methods, the normal approximation method and the data tilting method, for constructing confidence intervals for the conditional VaR estimator and assess their accuracies by simulation studies. Finally, we apply the proposed approach to an energy market data set.
منابع مشابه
Estimation of Value at Risk (VaR) Based On Lévy-GARCH Models: Evidence from Tehran Stock Exchange
This paper aims to estimate the Value-at-Risk (VaR) using GARCH type models with improved return distribution. Value at Risk (VaR) is an essential benchmark for measuring the risk of financial markets quantitatively. The parametric method, historical simulation, and Monte Carlo simulation have been proposed in several financial mathematics and engineering studies to calculate VaR, that each of ...
متن کاملGARCH Option Pricing: a Semiparametric Approach
Option pricing based on GARCH models is typically obtained under the assumption that the random innovations are standard normal (normal GARCH models). However, these models fail to capture the skewness and the leptokurtosis in financial data. We propose a new method to compute option prices using a non-parametric density estimator for the distribution of the driving noise. We investigate the pr...
متن کاملEstimating GARCH Models: When to Use What?
The class of GARCH models has proved particularly valuable in modelling time series with time varying volatility. These include financial data, which can be particularly heavy tailed. It is well understood now that the tail heaviness of the innovation distribution plays an important role in determining the relative performance of the two competing estimation methods, namely the maximum quasilik...
متن کاملStable Limits of Martingale Transforms with Application to the Estimation of Garch Parameters By
In this paper we study the asymptotic behavior of the Gaussian quasi maximum likelihood estimator of a stationary GARCH process with heavytailed innovations. This means that the innovations are regularly varying with index α ∈ (2,4). Then, in particular, the marginal distribution of the GARCH process has infinite fourth moment and standard asymptotic theory with normal limits and √ n-rates brea...
متن کاملStable Limits of Martingale Transforms with Application to the Estimation of Garch Parameters
In this paper we study the asymptotic behavior of the Gaussian quasi maximum likelihood estimator of a stationary GARCH process with heavy-tailed innovations. This means that the innovations are regularly varying with index α ∈ (2, 4). Then, in particular, the marginal distribution of the GARCH process has infinite fourth moment and standard asymptotic theory with normal limits and √ n-rates br...
متن کامل